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Abstract

The axisymmetric convective states of a binary liquid enclosed in a
vertical cylinder heated from below are determined by pseudo-spectral
numerical integration. In order to gain some insight on the constraints
that nearby boundaries can exert on the convective flows, three aspect
ratios (radius over height of the cylinder), as well as two types of
lateral kinematic boundary conditions (either no-slip or free-slip) are
investigated. The oscillatory flows that occur are found to undergo a
large variety of local and global bifurcations, the occurrences of which
depend on both aspect ratio values and boundary conditions.

1 Introduction

Since the first investigations of Bénard and Rayleigh, convection in horizontal
fluid layers heated from below is a problem that has been extensively studied
in the context of pattern formation, instabilities and dynamical behavior of
nonlinear systems. About 30 years ago, the case of binary mixtures [5] in the
same straightforward configuration was investigated and turned out to yield
additional complex spatiotemporal behavior, which can moreover arise (in
contradistinction to pure fluids in the same conditions) as the quiescent state
turns unstable. In binary liquid mixtures, solute mass fraction and tempera-
ture gradients are coupled by the Soret effect. Consequently, a homogeneous
mixture, once subjected to a thermal gradient, separates in composition. Ac-
cording to the sign of the Soret coefficient, the solute (which we take to be
the heaviest of the two components) migrates towards the warmer or colder
part of the container. The resulting Soret-driven mass fraction gradient thus
induces a solutal buoyancy that works with or against the thermal one. Both
sign and amplitude of the Soret coupling are accounted for in the dimension-
less separation ratio v». When v is negative, thermal and solutal buoyancies
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compete and the interplay between the two leads to the aforementioned dy-
namical behaviors.

An impressive number of studies have been published (see for instance
[1],[4] and references therein) on this system, mainly focused on horizontally
infinite or very extended layers. In such systems, endwalls are sufficiently
distant so that a preferential horizontal direction for wave propagation is
generated and hence favors 2D flows. However, for most practical systems
where mixtures are expected to convect, the ratios between the enclosure’s
extents are more modest. In such geometries, the presence of nearby walls
can be expected to exert a significant influence on the convective flows” dy-
namics, as indicated by experimental results (e.g: [2, 3, 6]).

The case of thermal convection of a binary liquid enclosed in a cylindrical
cell of small aspect ratio I' (radius over height ratio) is here tackled. Three
aspect ratios are considered: I' = 1/2, 1 and 2, as well as two types of
boundary conditions for the velocity on the circumference of the cylinder,
either no-slip or free-slip. The former simply represents the presence of a
rigid wall, whereas the latter is a crude approximation (capillary effects being
discarded) of a straight free surface and the modeled system then corresponds
to a liquid bridge [7].

2 Ruling equations and geometrical settings

The usual Oberbeck-Boussinesq equations, Soret effect included, are consid-
ered. Using the height h of the layer, the thermal diffusion velocity over h,
the imposed temperature difference AT and the Soret-induced mass fraction
difference AC of the quiescent state as reference scales leads to the following
set of dimensionless equations:

0

S+ (VYIV = —Vp+ RaPr(0+Uy)e, + Prvv, (1)
Vv = 0, (2)

06 2

o TV = v, + V7, (3)
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where v = ue, + we, is the velocity, e, and e, respectively being the ra-
dial and upward unit vectors. p, # and v denote departures from the static
pressure, temperature and mass fraction profiles. Ra, Pr and Le are the



usual Rayleigh, Prandtl and Lewis numbers and W is the separation ratio
between the solutal and thermal contributions to the density. The last three
parameters are constant for a given fluid and here set to Pr =1, Le = 0.1,
U = —0.2, leaving Ra as the main parameter of this study.

Temperatures are imposed on the horizontal walls, along with lateral
thermal insulation and impermeability at all boundaries. Top and bottom
boundary conditions are:
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Denoting the aspect ratio I' = R/h, where R is the radius of the cylinder,
the lateral conditions on the scalar fields are:
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Two sets of kinematic lateral boundary conditions are considered:

(a) No-slip: w=w=0for r=T,
or
o
-~ or
In all that follows, these will be referred to as (a) NS and (b) FS config-

urations.

(b) Slip-free: =0for r=T.

3 Results

3.1 General features of the branches of solutions

The typical evolution of the system (for all cases investigated) with increasing
Ra is the following:

1. The liquid remains motionless if the imposed temperature difference
AT (or equivalently the value of Ra) is too small.

2. When Ra becomes greater than a threshold value Rapy, the quiescent
state turns unstable via a subcritical Hopf bifurcation leading to oscil-
latory regimes.



3. Time-dependent motion exists over a limited range in Ra. Decreasing
Ra below a threshold value Ragy, (which is lower than Rag) brings
the system back to the motionless state. Increasing the value of Ra be-
yond another threshold value Ragsoc triggers a transition to stationary
convection.

4. The later transition is, in the present case (in contradistinction to the
smoother continuous one obtained in extended systems, e.g: [4]) always
yields hysteresis: steady state solutions remain stable for decreasing Ra
down to yet another threshold value Ragys. Below the later, the system
evolves towards either (depending on the case studied i.e: the set of
boundary conditions and aspect ratio I' considered) the oscillatory or
quiescent state.

3.2 Specific features of the oscillatory solutions

A detailed investigation of the oscillatory branches of solutions in all six con-
figurations (I' = 1/2,1 and 2 for both NS and F'S boundary conditions) has
been lead. It revealed a great deal of features specific to each configuration
that can be summarized as follows:

e In all cases, the oscillatory solutions that stem from the subcritical Hopf
bifurcation of the quiescent state share a given temporal symmetry 7.
Apart for the I' = 2, NS configuration (where it holds over the whole of
the oscillatory domain), this symmetry eventually breaks down, leading
to other types of (nonetheless still time-dependent) solutions.

e In the FS configurations and for all I', increasing Ra leads to a com-
plex sequence of bifurcations: temporal symmetry breaking is followed
by a period doubling route to chaos, itself followed by crisis induced
intermittency as the two attractors (born as T is broken) merge, statis-
tically restoring temporal symmetry. This final attractor then vanishes
in a boundary-induced crisis that leads to stationary convection.

e In the NS configuration, such route to chaos does not arise. For I' =
2, the oscillatory branch is found to end in a generalized subcritical
Hopf bifurcation. For I' = 1/2 and 1, another sequence of bifurcations
leading to steady convection emerges: temporal symmetry breaking
first arises (as in the F'S configuration) and the branch of oscillatory
solutions thus born ends in a homoclinic bifurcation as the associated
limit cycle collides with an unstable steady state solution.
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Conclusions

The investigation of the axisymmetrical states of a binary liquid enclosed in
a vertical cylinder has shown that the constraints exerted on the convective
flows by nearby side boundaries can lead to significant changes in the system’s
dynamical behavior.
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