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Abstract

The stable axisymmetric convective states of a binary liquid enclosed in a verti-
cal cylinder heated from below are exhaustively and accurately identified by pseudo-
spectral numerical integration. In order to gain some insight on the influence that
nearby boundaries can exert on flow dynamics, three aspect ratios (1/2, 1 and 2), as
well as two types of lateral kinematic boundary conditions (either no-slip or free-slip)
are investigated. The ranges over which stable quiescent, oscillatory and steady con-
vective states extend and coexist are given. The bifurcations leading to transitions
from one branch of solutions to another, as well as those that occur along the oscilla-
tory branch, are analyzed. The most significant effect of varying boundary conditions
and aspect ratio involves the route from oscillatory to steady convection. For a given
configuration, that route consists of a period doubling cascade followed by chaos, or a
subcritical generalized Hopf (or Neimark-Sacker) bifurcation, or a homoclinic bifurca-
tion. The dynamics of thermal convection of enclosed binary mixtures is clearly very
sensitive to both boundary conditions and aspect ratio.

1 Introduction

Since the initial investigations of Bénard and Rayleigh, convection in horizontal fluid lay-
ers heated from below is a problem that has been extensively studied in the context of
pattern formation, instabilities and dynamical behavior of nonlinear systems (see, for exam-
ple, Cross and Hohenberg [1] an references therein). Convection in cylindrical enclosures of
aspect ratios around unity is a topic that has drawn much attention over the past years.
Experimental and numerical studies of the convective flows that arise beyond onset, as well
as their secondary instabilities, are still ongoing, as exemplified by many recent publications
(see, e.g., Müller, [2] Touihri et al., [3] Hof et al., [4] Leong,[5] among others). Such works
typically focus on following the evolution of flows with Rayleigh number Ra (which accounts
for the externally imposed thermal stress) in given cases (i.e. given aspect ratio Γ, fluid
Prandtl number Pr and thermal boundary conditions). Despite these many contributions,
the knowledge of all the solutions and bifurcations that arise in the Γ-Pr-Ra parameter
space is so far incomplete.

Investigations on thermal convection of binary fluids began about 30 years ago (see Plat-
ten and Legros [6]). In these mixtures, solute mass fraction and temperature gradients are
coupled by the Soret effect. According to the sign of the Soret coefficient, the solute (which
we take to be the heaviest of the two components) migrates towards the warmer or colder
part of the container, and an initially homogeneous mixture, once subjected to a thermal
gradient, separates in composition. The resulting Soret-driven mass fraction gradient thus
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induces a solutal buoyancy that works against or with the thermal one. Both sign and ampli-
tude of the Soret coupling are accounted for in the dimensionless separation ratio ψ between
solutal and thermal buoyancies. These compete when ψ is negative, and their interplay
yields additional (compared to pure fluids in the same conditions) complex spatiotemporal
behaviors, which can moreover arise as the quiescent state turns unstable. Over the past
decades an impressive number of 2D studies has been published on this system (see for in-
stance Kolodner et al., [7] Barten et al., [8] Lücke et al., [9] and references therein), mainly
focused on horizontally infinite or very extended layers. All point out the dynamical richness
of this configuration and confirm the extreme sensitivity of thermal flows to the presence of
solutal distributions, even when mass fraction amplitudes are very small.

Numerical explorations of these systems are harder to carry out than when pure fluid are
considered. The dimension of the parameter space to investigate is higher (Γ, Pr, Ra, ψ and
Lewis number Le). Moreover, the occurrence of time-dependent flows rising directly from the
rest state implies extra numerical requirements. First, their exploration must be performed
over significantly large durations in order to reach settled temporal behaviors. Secondly, the
numerical scheme that is used must be consistent with the continuous space-time problem
to solve.

Three-dimensional numerical simulation of the first bifurcations in binary liquid thermal
convection cannot therefore be yet considered as feasible, and literature is so far devoid of
any results of this kind. What has been done in 2D focuses on limited regions of parameter
space and mainly on large aspect ratio enclosures. To this day, even the 3D linear stability
of a quiescent layer in small aspect ratio cylindrical cells has not been fully explored. Such
analyses have been performed, by Hardin et al. [10] and Mercader et al., [11] but over limited
ranges of parameters. The reason for this is that which mode (axisymmetrical or azimuthal)
is the most destabilizing depends on all of the system’s parameters (i.e. Γ, Pr, Le and ψ).
Note that the (temporal and azimuthal) structure of the destabilizing mode is not necessarily
that of the resulting non linear solution. Since it is known that in the pure fluid case, [4, 5]
axisymmetrical and 3D states coexist over specific sub-domains (in Ra), such may also occur
for binary liquids.

Experiments on convection of water-ethanol mixtures in long rectangular cells (of vari-
able aspect ratio, length over height of the enclosure ranging from 15 to 21) by Kolodner [12]
display a strong sensitivity of flow dynamics to the length of the apparatus. This feature
was also obtained in the 2D numerical simulations of Batiste et al. [13, 14]. The present
work tackles a specific aspect of the richness of 2D dynamics in thermal convection of a
binary liquid. We analyze the non linear states that occur in axisymmetrical enclosures of
small aspect ratios (radius over height ratio), namely Γ = 1/2, 1 and 2, and with two types
of boundary conditions for the velocity on the circumference of the cylinder, either no-slip
or free-slip. The former simply represents the presence of a rigid wall, whereas the latter is
a crude approximation (capillary effects being discarded) of a straight free surface and the
modeled system is then related to a liquid bridge (Wanschura et al. [15]).

From the forthcoming results, it will be inferred that thermal convection of a binary
liquid is extremely sensitive to both aspect ratio and boundary conditions.

This paper is organized as follows: the equations ruling binary liquid thermal convection
are given and discussed in Sec. 2. The numerical tool and methods used for the simula-
tions are presented in Sec. 3. Results obtained for the six modeled configurations are given
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and compared in Sec. 4, where the multitude of bifurcations that arise are detailed. Our
conclusions are then summarized in Sec. 5.

2 Physical Model

2.1 Ruling equations

The usual Oberbeck-Boussinesq equations, Soret effect included, are considered. Using the
height h of the layer, the thermal diffusion velocity over h, the imposed temperature differ-
ence ∆T (between bottom and top plates) and the Soret-induced mass fraction difference
∆C of the quiescent state as reference scales leads to the following set of dimensionless
equations:

∂v

∂t
+ (v.∇)v = −∇p+RaPr (θ + ψγ) e

z
+ Pr∇2v, (1)

∇.v = 0, (2)

∂θ

∂t
+ (v.∇)θ = v.e

z
+ ∇2θ, (3)

∂γ

∂t
+ (v.∇)γ = v.e

z
+ Le (∇2γ −∇2θ), (4)

where v = ue
r
+ we

z
is the velocity, e

r
and e

z
are respectively the radial and upward unit

vectors. p, θ and γ denote departures from pressure, temperature and mass fraction static
profiles. The four numbers that appear in the governing equations are

Ra =
α∆T g h3

νκ
, ψ =

β∆C

α∆T
, Pr =

ν

κ
, Le =

D

κ
,

where α and β are the (positive) thermal and solutal expansion coefficients, ν, κ and D
are the momentum, heat and mass diffusivities, g is the gravitational acceleration. The last
three numbers are constant for a given fluid and here set to Pr = 1, Le = 0.1 and ψ = −0.2
(values that roughly are those of a 3He-4He mixture [17, 16]), leaving Ra as the main pa-
rameter of this study. Recall that taking ψ to be negative implies that solutal and thermal
buoyancies compete.

All boundaries are impervious to matter. Temperatures are imposed on the horizontal
walls, along with lateral thermal insulation. Top and bottom boundary conditions are:

θ =
∂θ

∂z
−
∂γ

∂z
= u = w = 0 for z = ±

1

2
.

Denoting the aspect ratio Γ = R/h, where R is the radius of the cylinder, the lateral
conditions on the scalar fields are:

∂θ

∂r
=
∂γ

∂r
= 0 for r = Γ.

As previously mentioned, two sets of kinematic lateral boundary conditions are considered:

(a) No-slip: u = w = 0 for r = Γ,

or

(b) Free-slip: u =
∂w

∂r
= 0 for r = Γ.

In all that follows, these will be referred to as (a) NS and (b) FS configurations.
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Nz 30 40 50 60 80 100

δE 4.210−7 1.210−8 5.410−11 2.110−12 5.110−13

δθ 2.810−5 4.610−7 5.710−9 1.110−11 4.410−11

γ 1.110−7 3.310−10 1.510−10 5.010−11 9.110−12 5.510−12

d 4.310−4 1.210−4 2.510−5 7.010−6 9.010−6 6.010−6

Table 1: Evolution of global quantities with grid size. These values were obtained for a
steady flow at Ra = 3000, in the Γ = 2 NS configuration, with a time step δt of 5 10−4.
Grids of (2Nz + 1) × (Nz + 1) nodes in r × z were used. δθ and δE denote the relative
difference to the overall temperature θref = −2.69562701076 10−2 and kinetic energy Eref =
1.5660498335843 102 obtained as references with Nz = 100. The last two lines of the table
refer to the mean mass fraction γ in the enclosure (γ should be zero) and the relative velocity
divergence d (see text).

2.2 Symmetries of the solutions

Since in the following sections the symmetries of both steady and time-dependent convective
states will be of interest, we mention here that the up-down (or mirror symmetry, denoted
M) in the governing equations implies the following:
if X1 = (u1, w1, p1, θ1, γ1) satisfies equations (1-4), then so does X2 = (u2, w2, p2, θ2, γ2),
provided that

u2(r, z, t) = u1(r,−z, t),

w2(r, z, t) = −w1(r,−z, t),

p2(r, z, t) = p1(r,−z, t),

θ2(r, z, t) = −θ1(r,−z, t),

γ2(r, z, t) = −γ1(r,−z, t).

Solutions therefore either come in pairs that transform into one another under M or are
invariant under such a transformation.

Periodic oscillations (of period τ) may possess a temporal symmetry T relating solutions
separated by half a period in the following way:

u(r, z, t+
τ

2
) = u(r,−z, t),

w(r, z, t+
τ

2
) = −w(r,−z, t),

p(r, z, t+
τ

2
) = p(r,−z, t),

θ(r, z, t+
τ

2
) = −θ(r,−z, t),

γ(r, z, t+
τ

2
) = −γ(r,−z, t).

The role of temporal symmetry and its practical implications have been examined and
clarified by Swift and Wiesenfeld. [18] The main result of their study is that in systems such
as the one investigated here, time-symmetric oscillations cannot undergo period doubling
bifurcations. These solutions are hence typically [19] found to first bifurcate to asymmetry
before undergoing period doubling.
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3 Numerical method

3.1 Spatial and temporal integrations

The set of governing equations is solved by a Chebyshev pseudo-spectral method in space
and a second-order finite-differences scheme in time.

Gauss-Lobatto nodes are used in the vertical direction e
z
, located at

zj = −
1

2
cos

(

πj

Nz

)

with j ∈ [0, Nz] ,

where Nz is the highest degree (cutoff frequency) of the Chebyshev polynomial expansion.
Gauss-Radau nodes are used in the radial direction e

r
, located at

rj =
Γ

2

(

1 + cos

(

2π(Nr − j)

2Nr + 1

))

with j ∈ [0, Nr] .

Note that using a Gauss-Radau grid enables one to avoid the singularity at r = 0 and to
implicitly impose the axisymmetry boundary conditions on the axis, namely u = ∂w

∂r
= ∂θ

∂r
=

∂γ
∂r

= 0.
The cutoff frequencies Nr and Nz were chosen such that Nr = ΓNz, which leads to grids

of (ΓNz + 1)(Nz + 1) nodes.

Time integration is achieved by a second-order finite-differences approximation, using
a three-level scheme for time derivatives, diffusion and advection terms respectively being
evaluated implicitly and explicitly. Velocity and pressure fields are uncoupled via a specific
projection-diffusion algorithm [20, 21] which is consistent, [22] in contrast to the well known
time-splitting schemes, with the continuous uncoupled velocity-pressure problem. Pressure
is first obtained by solving a quasi-Poisson operator without having to impose any boundary
condition on this field. Velocity is then obtained by solving a standard unsteady diffusion
equation with a divergence-free right hand side. Since the numerical divergence of any ana-
lytically known divergence-free field cannot exactly cancel but only asymptotically with node
number, this approach yields, by truncation, an asymptotically solenoidal velocity. This has
been commented at length by Tric et al., [23] who obtained the expected exponential decrease
of ∇.v with cutoff frequencies in computations of thermally driven pure fluid convection in
a cubical cavity.

3.2 Accuracy assessments

3.2.1 Spatial convergence

Using a pseudo-spectral approach leads to expect an exponential improvement of numerical
solutions with increasing cutoff frequencies. This has been checked using the following global
instantaneous quantities:

E = 2π
∫ r=Γ

r=0

∫ z=1/2

z=−1/2

v.v

2
rdrdz ,

θ = 2π
∫ r=Γ

r=0

∫ z=1/2

z=−1/2
θ rdrdz ,

γ = 2π
∫ r=Γ

r=0

∫ z=1/2

z=−1/2
γ rdrdz , d =

||∇.v||

||(v.v)1/2||
,
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Figure 1: Evolution of the relative error δω on the angular frequency of a time-dependent
flow with grid size [(2Nz + 1) × (Nz + 1) nodes in r × z]. These values were obtained for
a monoperiodic flow at Ra = 2600, in the Γ = 2, NS configuration, with a time step δt of
10−3.

where ||. . .|| denotes the infinite norm (i.e: the maximum pointwise absolute value), E is the
kinetic energy in the enclosure, θ and γ are the global temperature and concentration of the
mixture and d is the relative velocity divergence. The evolution of these four quantities with
mesh size, for a given steady solution, is given in Table 1. Both γ and d must asymptotically
cancel with increasing Nz, as long as roundoff errors are not taken into account. The reason
for this, in the case of γ, comes from solute mass conservation requirement, all boundaries
being impervious to matter. Note that such is not the case for θ since nothing imposes
that incoming and outgoing heat fluxes should be instantaneously equal. Having no a priori
values for θ and E to compare to, those obtained with the refined grid Nz = 100, for which
d and γ are clearly converged, are used as reference. The results given in Table 1 show the
expected exponential improvement up to at least Nz = 60, followed by saturation due to
roundoff effects.

As for the convergence behavior of settled periodic solutions, Fig. 1 displays the relative
error

δω =

∣

∣

∣

∣

∣

ω(Nz) − ω(Nz = 80)

ω(Nz = 80)

∣

∣

∣

∣

∣

on the angular frequency of a test case. Here as well, the exponential convergence with
increasing cutoff frequencies is obtained.

All forthcoming results were obtained using grids of (101 × 51), (71 × 71), (51 × 101)
nodes for the Γ = 2, 1 and 1/2 configurations. Some results were cross-checked on finer grids
of (161 × 81), (111 × 111) and (81 × 161) nodes, respectively. Resulting shifts in threshold
values (even in regions where chaotic flows occur) were of less than 0.05%.
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Figure 2: Influence of δt on δω, the relative deviation to our most accurate computations
(ω = 7.19525440315 when δt = 3 10−5 for Γ = 1/2, and ω = 7.533299504778 when δt = 10−4

for Γ = 2).

3.2.2 Temporal convergence

Solutions were taken to be stationary when the following criterion was fulfilled,

Max

(

|φn+1 − φn|

|φn|

)

< 10−4δt ,

where φn stands for the value of any of the physical fields at dimensionless time nδt and
Max denotes the maximum evaluated over all fields and nodes.

In the case of time-dependent solutions, a first indication of the effective time-dependency
can be extracted from inspection of Poincaré section (see Sec. 4.1). When the solutions
seemed to be monoperiodic, they were deemed so when their instantaneous angular frequency
(computed from the return times between successive impacts in the Poincaré section) satu-
rated over its first 8 significant figures.

The time step δt to be used for sufficiently accurate computations of time-dependent
solutions was estimated from several test cases such as those given in Fig. 2. The relative
deviation δω to reference ωref obtained with a “small enough” time step δt is given. It
depicts the (expected) second-order temporal convergence of the numerical resolution. The
values of δt used to obtain all forthcoming results were chosen to be such that δω < 10−4 for
the previously mentioned test cases and are: δt = 3 10−4, 10−3 and 10−3 for the Γ = 1/2, 1
and 2 NS configurations and δt = 2 10−4, 10−3 and 5 10−4 for the Γ = 1/2, 1 and 2 FS ones.

4 Results

Results are presented in four steps. The first is dedicated to the analysis of typical tran-
sient behaviors and to informations these yield about bifurcation thresholds and types. An
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Figure 3: Upper row: Left plot: Evolution of the radial velocity at node P1 for Ra = 2600
in the Γ = 2, NS configuration. At time t = 0 the quiescent state is perturbed by a
small random amplitude and the system evolves towards a stable periodic solution. Right
plot: Corresponding instantaneous angular frequency ωn (evaluated from return times τn in
the Poincaré section, see text). Lower row: vertical velocity wn, temperature θn and mass
fraction γn in the Poincaré section.

overview of the branches of solutions with their general characteristics is then given, followed
by a presentation of the general features of the oscillatory states. Finally, the oscillatory
flows’ successive bifurcations, up to the transition to steady regimes (also known as Steady
Overturning Convection, SOC) are described.

4.1 Transient behaviors

The temporal evolution of the system is followed by monitoring the values of u, w, θ and γ
at a pair of z-symmetric nodes P1 and P2, located at rj=2(Nr+1)/3 and zj=(Nz+1)/3, zj=2(Nz+1)/3

respectively.

These time series provide useful information not only about the attractor that is reached
(once transients associated with initial conditions die away), but also on the local bifurca-
tions that occur in the system.

In the vicinity of local bifurcations, the temporal evolution about solutions is given by
well known and documented (see, e.g., the monographs of Manneville [24] or Ott [25], among
others) normal forms. Corresponding transient evolutions are then exponentially growing or
decaying with a rate λ linked to both the type of the bifurcation and the distance to the
threshold value Racrit of the control parameter. Thus, in the case of a pitchfork bifurcation,
one should have λ ∝ (Ra − Racrit), as well as for a Hopf bifurcation, where the transient
will also display oscillations. For a saddle-node bifurcation, λ2 ∝ (Ra− Racrit).
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Figure 4: Left: Temporal growth rate λ of infinitesimal perturbations of the conductive state
as a function of the Rayleigh number in the vicinity of the Hopf bifurcation of the quiescent
state (Γ = 2, NS configuration). Right: Squared temporal growth rates λ2 of transient
relaxation towards the stationary state close to the saddle-node bifurcation (Γ = 2, NS
configuration). In both cases, the solid line is obtained using the linear law given by the two
points that lie closest to vanishing growth rate.

The values of λ (obtained at given values of Ra) can simply be extracted from the time
series (monitored at P1 and P2) as transients die away and the system settles towards a
solution S. This procedure is rather straightforward if S is a steady state. When S is a
periodic solution, the transient evolutions from which the aforementioned behaviors are to
be extracted come from those obtained in a Poincaré section. The Poincaré section used
throughout this study is build from the time series recorded at P1. It is defined by the
canceling of u, going from negative to positive values, each impact yielding (discrete) time
series of w, θ, γ and τ (return time between successive impacts).

An illustration is given in Fig. 3. The time series depicts the evolution of u at P1, in a
case where the initial condition of the system is a quiescent state (unstable at the Ra value
set for this run) perturbed (at t = 0) by an O(10−2) random amplitude. Since the quiescent
solution has turned unstable via a Hopf bifurcation, the perturbation triggers the (linear)
Hopf mode. As long as amplitudes remain small (t < 70), the transient evolution of the
system is an exponentially growing oscillation composed of a single frequency, as shown by
the plot of ωn (angular frequency evaluated from the return times between impacts in the
Poincaré section) in Fig. 3. When amplitudes become large, the contribution of nonlinear
terms to the dynamics is no longer negligible and the system settles towards a stable peri-
odic solution (t > 100). The exponential dying out of the transient, as the latter solution is
reached and from which a value of λ can be extracted, is quite obvious in the plots given in
Fig. 3.

An example of the feasibility and limitation of following the evolution of λ with Ra in
the vicinity of a local bifurcation in order to pinpoint the threshold value from the obtained
trends is given in Fig. 4. The expected trend (respectively linear (top) or quadratic (bottom)
in the vicinities of Hopf or saddle-node bifurcations) is generally obtained over a small domain
in Ra in the vicinity of the bifurcation. Obtaining the λ(Ra) trend not only proves that the
inferred bifurcation indeed occurs, but yields a more accurate estimation of the threshold
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AB CD AB CD AB CD
A : 3148.5

1 NS B : 3079.5
C : 3271.3
D : 3011.5

A : 15167.8
1
2

NS B : 14717
C : 15797.1
D : 14938

A : 2582.3
2 NS B : 2573.2

C : 2875.7
D : 2628.8

A : 8412.7
1
2

FS B : 8349
C : 8948
D : 8116.8
A : 2434.0

1 FS B : 2430.5
C : 2588.8
D : 2326.5
A : 2327.1

2 FS B : 2326.5
C : 2551.9
D : 2215.7

Table 2: Sketches of the three relative positionings of conductive, oscillatory and steady
branches of solutions. Top row: Bifurcation diagrams corresponding to the three observed
cases. The horizontal line depicts the rest state, ending at a subcritical Hopf bifurcation
(A). The middle curve depicts time-dependent states bounded by a saddle-node bifurcation
(B) and the transition to SOC (C). The upper curve depicts steady convective states, the
lower boundary of which is a saddle-node (D).

value (by definition the value of Ra for which λ cancels) than (necessarily extremely lengthy,
due to critical slowing down as λ→ 0) direct simulations.

4.2 Branches of solutions

It is well known that, for binary liquids enclosed in extended containers, a sequence of allowed
states occurs as Ra is increased, starting from the quiescent state towards steady states after
an intermediate oscillatory regime. Each of these states exists over a given domain, thus
leading to hysteresis in transitions from one solution to the other. The branches of stable
solutions of all the configurations investigated in this work are sketched and categorized in
Table 2. Four characteristic points, along with corresponding threshold values are given: A
for the end of the rest state branch (subcritical Hopf bifurcation), B (saddle-node) and C
(see Sec. 4.4), the extremities of the oscillatory branch and D (saddle-node) the beginning of
the SOC domain. The relative positions of points A,B and D was used to categorize results:
going from the leftmost to the rightmost column, point D moves from the left of B to the
right of A. In all cases, taking a quiescent state to values of Ra above RaA triggers the
Hopf mode and leads to an oscillatory state. We find that aking an oscillatory solution to
Ra values lower than RaB always sends the system back to a quiescent state, even if steady
convection is also possible for that value of Ra. This reflects the effective extension of the
quiescent state’s basin of attraction. Configurations given in the leftmost column of Table 2
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Figure 5: Streamfunction φ contours of stationary flows for Γ = 1/2 (FS configuration,
Ra = 8600), Γ = 1 (NS configuration, Ra = 3300) and Γ = 2 (FS configuration, Ra = 2550).
Solid and dashed lines indicate positive and negative values (clockwise and anti-clockwise
motion) of φ. Displayed contour levels are evenly distributed and range from φmin to φmax.
Note that the rolls are not even in z and that applying the mirror symmetry M to the
streamfunction is equal to transforming φ(r, z) into −φ(r,−z) .

are such that the steady state branch extends below the oscillatory one (i.e. RaD < RaB).
When RaD > RaB (middle and rightmost column of Table 2), taking a steady flow to Ra
values below RaD leads to oscillatory convection. Note that for the Γ = 2, NS configu-
ration (rightmost column of Table 2), oscillatory convection is the only stable solution for
RaA < Ra < RaD. All FS configurations are found to belong to the same category, whereas
the NS ones span all three, non-monotonically with Γ.

The evolution of the Hopf thresholds of the rest state (point A in Table 2) with aspect
ratio, as well as that of the corresponding Hopf marginal frequencies (given on the plots in
Table 3), agree with linear stability results: [10, 11]

1. the values increase slightly from Γ = 2 to 1 and, obviously, much more dramatically
when Γ < 1;

2. they increase as well going from FS to NS conditions.

Moreover, these trends also hold for all the thresholds of both oscillatory and steady flows.
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Before going into a detailed description of the oscillatory branches, we mention here that
the steady convective states’ characteristics, in the range of Ra values considered, are very
similar for a given aspect ratio (1 roll for Γ = 1 and 1/2 and a pair of rolls for Γ = 2) and
not sensitive to the choice of boundary conditions. Figure 5 depicts typical flow structures
for Γ = 1/2, 1 and 2. All SOC solutions do not possess the M symmetry property and
therefore always come in M-symmetric pairs.

4.3 General features of the oscillatory states

Table 3 depicts the angular frequencies of all the monoperiodic oscillatory states, for all Γ
and both types of boundary conditions. Going along these curves with increasing Ra values
corresponds to following the oscillatory branches of Table 2, from point B up to point C in
the NS case or up to the last monoperiodic flow in the FS one.
Point C is not given for the FS configurations in Table 3 as the oscillatory states turn
aperiodic before the transition to SOC. These will be described in Sec. 4.4.3. Of the six
investigated configurations, only two (Γ = 1 and Γ = 1/2, NS) are such that the frequency
of the oscillations goes to zero as the transition to SOC is reached.

All time dependent states which stem from B share the temporal symmetry T . Only in
the Γ = 2, NS configuration is it found to hold over the entire oscillatory domain. In all
other configurations, this symmetry breaks down, at point T . This occurs via a supercritical
pitchfork bifurcation at the Ra (= RaT ) values given in Table 4. The emerging pair of
periodic solutions are M-symmetric. The proportion of the oscillatory domain over which T
holds is found to increase with Γ in both the FS and NS configurations, which could imply
that Γ needs to be smaller than a critical value in order to break the T symmetry. Another
effect, apparently also due to the highly constrained geometry of the enclosure, appears from
the inspection of the last column of Table 4: the overlap between stable quiescent and os-
cillatory branches decreases with respect to the oscillatory domain’s extension as Γ increases.

The next section deals with the description of the specific bifurcations that occur in each
of the six investigated configurations.

4.4 Successive bifurcations of the oscillatory flows

4.4.1 Γ = 2, NS configuration

As mentioned in the previous section, in the Γ = 2, NS configuration, no temporal symmetry
breaking occurs. The branch of oscillatory solutions terminates in this case via a subcritical
generalized (or secondary) Hopf bifurcation. As Ra is increased towards the bifurcation
value, the monoperiodic solutions display transient decaying oscillatory modulations. An
example of the evolution of resulting impacts in the Poincaré section given in Fig. 6 where

an embedding of the values of w at the (n+1)th impact versus the nth is shown. The {w(n+
1), w(n)} sets spiral in towards a final value, according to both growth rate λ and angular
frequency of the secondary Hopf mode. The evolution of λ in the vicinity of this bifurcation
is given in Fig. 6. At the bifurcation, the secondary Hopf frequency is 0.61, roughly a
decade lower than the oscillation’s base frequency. Increasing Ra slightly beyond RaC ,
the corresponding monoperiodic solution turns unstable with an initially small modulation
arising and growing exponentially. Since the bifurcation is subcritical, the amplitude of the
modulation does not saturate (no matter how close to RaC Ra may be) and the system is
enventually cast towards the nearby stable SOC solutions.
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Table 3: Angular frequencies of monoperiodic flows. Top row: Γ = 1/2, middle row: Γ = 1,
lower row: Γ = 2. Points T and C, when given, indicate the occurrence of temporal symmetry
breaking and the transition to SOC (see Table 2).

4.4.2 Γ = 1 and 1/2, NS configurations

The Γ = 1 and 1/2 configurations have much in common. As previously mentioned, these
are the only cases for which the frequency of the oscillations is found to go to zero as the
transition to SOC is reached.

As might be guessed from the cluster of points near the end of the oscillatory branches
given in Table 3, quite distinctive behaviors occur there. An enlargement of the end of
the oscillatory branch (Γ = 1/2 case) is given in Fig. 7, showing that there are in fact two
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Case RaT
RaT −RaB

RaC−RaB

RaA−RaB

RaC−RaB

1
2

(SF) 8900.5 0.921 0.106
1 (SF) 2577.9 0.931 0.0221
2 (SF) 2542.2 0.957 0.00266
1
2

(NS) 15619.7 0.836 0.417
1 (NS) 3260.3 0.943 0.360
2 (NS) - - 0.0301

Table 4: Rayleigh number values at which temporal symmetry T is broken (second column),
proportion of the oscillatory domain over which T holds (third column) and over which both
oscillatory and conductive states are stable (fourth column).
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Figure 6: Left: Embedding of the successive values of the vertical velocity w in the Poincaré
section, depicting the transient modulation of the periodic state (here, the Ra = 2875 flow)
by the secondary Hopf mode in the Γ = 2, NS configuration. w(n) is the value at the nth
impact. As time (and therefore n) increases, the {w(n+ 1),w(n)} sets spiral in toward their
final value, w(n + 1) = w(n) = 0.6841. Right: Temporal growth rates λ of the transient
modulation of the periodic state as a function of the Rayleigh number, close to the generalized
Hopf bifurcation (the solid line is obtained using the linear law given by the two points that
lie closest to vanishing growth rate).

branches which overlap over a very narrow range in Ra. Since the upper branch ends in
a saddle-node bifurcation and the lower branch begins at one, we conjecture that they are
directly connected to each other by an unstable part (obviously unaccessible to our time
marching process). Such “bending” of the periodic states branch leading to the coexistence
of two stable oscillatory states has also been numerically observed (in mixtures for which
Pr = 10 and Le = 0.01) in extended layers, [9] when Ψ < −0.4.

Another important feature depicted in Fig. 7 is the extremely sharp drop in frequency
that occurs at the end of the lower branch.

Does the frequency go down to zero as the bifurcation is reached? Such is the case, as
indicated by Fig. 8, where the period τ = 2π/ω versus the distance Ra − RaC is plotted,
with RaC = 15797.0099.

The data match a τ ∝ − ln (RaC − Ra) scaling law which meets one of the behaviors
obtained in horizontally infinite plane layers (see Knobloch, [26] Knobloch and Moore [27]).
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Figure 7: Angular frequencies of periodic solutions at the end of the oscillatory domain, in
the Γ = 1/2, NS configuration.
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Figure 8: Period τ of the oscillations versus the distance (Ra − RaC , where RaC ≃
15797.0099 ) to the homoclinic bifurcation of the periodic orbit (Γ = 1/2, NS configura-
tion).

In the latter, the transition corresponds to a standing waves branch vanishing in a heteroclinic
bifurcation between the limit cycle and a pair of steady state solutions. In the present case,
the limit cycle collides with an unstable SOC fixed point in a homoclinic bifurcation which
leads to the same scaling. An illustration of this global bifurcation is given in Fig. 9 where
phase portraits of the limit cycle prior to the bifurcation and the path followed by the system
afterwards are shown.

In unbounded layers, another possible scenario involves traveling waves (TW), the fre-

15



-0.35

-0.25

-0.15

-0.12 -0.06 0

γ

θ

-2 0 2

-0.35

-0.25

-0.15

-5

0

5

-2 0 2

w

u

-5

0

5

-0.12 -0.06 0

Figure 9: Projections of the phase portrait of the periodic orbit (full line) in the (θ, γ), (u, γ),
(u, w) and (θ, w) planes, prior (Ra = 15797.0098) to the homoclinic bifurcation. The arrows
indicate the direction of motion along the orbit. The large dot depicts the initial position
of the system when Ra was increased to Ra = 15797.0099, slightly above RaC . From that
point, the system first closely follows the path given by the limit cycle, up to an outset that
sends it off (dashed line) towards the stable SOC fixed point (star).

quency of which also vanishes as SOC is reached, but following a τ ∝ (RaTW
C −Ra)−1/2 law.

It corresponds to a collision between a group orbit (of SOC solutions, each being neutrally
stable with respect to translation) and isolated TW solutions.

This homoclinic bifurcation of the oscillatory branch also occurs in the Γ = 1 case. The
only difference between the Γ = 1 and Γ = 1/2, NS configurations is that the branch bending
that arises in the latter does not occur in the former.

4.4.3 FS configuration

For all three values of Γ, the sequence of bifurcations that occur with increasing Ra (along
with the associated dynamical behaviors) is the following:

1. The first bifurcation occurs at RaT , where oscillations loose their temporal symmetry
T via a supercritical pitchfork bifurcation yielding two branches of M-related periodic
solutions.

2. For Ra slightly higher than RaT , these oscillatory states undergo a period doubling
cascade that leads to chaotic regimes (as shown by the bifurcation diagrams in Fig. 10).

3. In this chaotic region (up toRa = RaI) period 7 and period 5 windows are encountered.
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Figure 10: Bifurcation diagrams of the oscillatory solutions, starting from the temporal
symmetry breaking up to the boundary-induced crisis (see text). Upward and downward
triangles refer to the M-related states before their merging into a single attractor (diamonds).
The upper diagram is obtained for Γ = 2 and the lower one for Γ = 1/2. In both diagrams,
the values given on the ordinate are those of γ in the Poincaré section.

Period Γ = 1/2 Γ = 1 Γ = 2
1 8932 2584 2549

2 8933
2 8935 2584.5
2 8937 2585 2550
2 8938 2585.5 2550.8

4 8938.5
4 8939 2551
4 8939.5 2586 2551.2

8 2586.2 2551.25

32 2551.3

C2 8940 2586.5 2551.4

Table 5: Examples of results obtained at given Ra values relative to the period 2 based
windows (C2 denotes period 2 based chaos).

4. At RaI , crisis-induced intermittency occurs: the separate domains in which the M-
related solutions lived merge and the flow becomes statistically invariant under M.

5. Chaotic behavior continues until Ra = RaC is reached, where there is evidence of
a boundary-induced crisis (the attractor becomes “leaky”): after a chaotic transient,
trajectories eventually escape, leading the flow to the nearby (SOC) stable fixed point.

Exploring thoroughly the sequences of bifurcation as well as accurately determining the
values of thresholds RaI , RaC and ranges of periodic windows have not been attempted,
as such would require considerable amounts of computing time. Hence, the given scenario
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Figure 11: γn+1 vs γn Poincaré section return map (from the Γ = 1, FS configuration),
displaying the attracting sets before (upwards and downwards triangles, Ra = 2586.78) and
after (diamonds, Ra = 2587.5) the occurrence of crisis-induced intermittency.

is inferred from obtained results and comparison with typical results detailed in mono-
graphs [25, 24] on dynamical systems. For the sake of completeness, we give the following
examples:

• In all cases period 2 behavior is indeed found to be followed by period 4, but as the
period doubling cascade continues, it does so in a very narrow range in Ra, and in-
termediate doublings were sometimes missed (see Table 5). A closer look at Poincaré
section return maps (such as the ones shown in Fig. 11), along with successive embed-
dings thereof, shows that, even though the maps are not unimodal, they evolve very
much as the standard logistic map does (greater differences do arise beyond the period
2 window). From that, we conjecture that the period doubling cascade is probably
complete in all three configurations.

• Similarly, the statement that period 5 and 7 windows occur comes from the combined
examination of return maps and results such as landing in one (for instance, period 5
behavior is found at Ra = 8942 for Γ = 1/2 and period 10 occurs at Ra = 2586.79 for
Γ = 1) or witnessing related chaotic behavior (at Ra = 2586.8 for Γ = 1 as well as at
Ra = 2551.725 for Γ = 2).

It might be worth mentioning here a series of numerical investigations [28, 19, 29] on
doubly diffusive convection (in which the Soret effect is neglected and a vertical mass fraction
gradient is externally imposed) in 2D Cartesian enclosures of small lateral extension. In
these boxes, oscillatory solutions were found to exhibit a rich variety of spatiotemporal
behaviors, such as multiple coexisting branches of “bubble” structure (cascades of period
doubling bifurcations leading to chaos and followed by reverse sequences which restore simple
periodicity). These studies, in which temporal symmetry breaking followed by a cascade of
period doubling bifurcations leading to chaotic oscillations is observed, were obtained with
free-slip boundary conditions.

5 Conclusions

In this paper, axisymmetric convection of a binary liquid enclosed in a vertical cylinder is
investigated. In order to clarify the influence of nearby side boundaries on flow dynamics,
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three aspect ratios (Γ = 2, 1 and 1/2), as well as either no-slip or free-slip boundary condi-
tions on the cylinder’s circumference, are considered.

The oscillatory states are found to undergo various and multiple bifurcations, the oc-
currences of which strongly depend on the choice of both boundary conditions and aspect
ratio. The most significant difference between NS and FS configurations lies in the route to
SOC: The oscillatory branches of solutions of NS cases terminate via either a homoclinic (for
Γ = 1/2, 1) or a subcritical generalized Hopf (or Neimark-Sacker) bifurcation (for Γ = 2),
whereas those of the FS cases undergo a period doubling cascade, followed by chaos. It is
known [18] that the latter route can only occur for states not possessing the T symmetry.
Moreover, the proportion of the oscillatory domain over which T does not hold is found to
decrease with increasing Γ, much faster in NS than in FS configurations (Table 4). It can
thus be conjectured that either all FS cases do bifurcate to SOC in the same way (meaning
that the proportion shrinks, but only asymptotically, with Γ), or that there is a critical
aspect ratio beyond which the route to SOC will be different. The NS configuration is an
obvious illustration of the existence of such a critical aspect ratio Γcrit (about 1.3 from the
data in Table 4). Below Γcrit, T -symmetry breaking occurs: it does not however lead to
period doubling but to a (global) homoclinic bifurcation, as the limit cycle collides with an
unstable SOC fixed point. Above Γcrit, it is a (local) subcritical Hopf bifurcation of the
T -symmetrical monoperiodic solutions that leads to SOC.

The dynamical richness of this system is such that some details (e.g. the very small
Ra ranges of hysteretic features) are likely to escape experimental investigations, even if
extremely carefully designed.

The presence of nearby side boundaries clearly induces significant changes in the dynam-
ical behavior of binary liquid thermal convection.
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