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Abstract

The high Rayleigh number (Ra) axisymmetric convection regimes of Pr = 1 pure
and (Le = 0.1, Ψ = −0.2) binary liquids are numerically investigated and compared.
The fluids are enclosed in a vertical cylinder, of aspect ratio height

radius = 2 and heated from
below, with either no-slip or free-slip kinematic lateral boundary conditions. Branches
of solutions and transitions between states that occur as Ra is varied up to O(105)
are given, along with a description of the encountered bifurcations. When a free-slip
condition is imposed along the circumference of the cell, pure fluid and binary liquid
stationary flows are found to become identical at high Ra, an often reported feature.
When the lateral boundary condition is set to no-slip, the high Ra steady flows of
pure and binary liquid, although very similar, undergo different bifurcations. This
is related with a locally quasi-quiescent region present in both cases, the stability of
which controls the flow regime in the whole fluid layer. A branch of resulting oscillatory
states thus does not appear in the bifurcation diagram of the binary liquid.

1 Introduction

Fluid motion driven by thermal gradients is a common feature of many natural and indus-
trial systems. The traditional problem of a mono-component fluid layer heated from below is
a paradigm of the rich spatiotemporal behaviors that can arise in non-linear systems driven
away from equilibrium. Since the governing equations are well known and the experimental
setup is sufficiently simple to allow controlled experiments, it has become the context of
many studies (see for instance [2] for a review of recent developments) on pattern forma-
tion and related topics. The ‘simplicity’ of this system comes from the fact that only two
parameters are needed to describe it, the Prandtl Pr and Rayleigh Ra numbers. The first
solely depends on the characteristics of the fluid whereas the second is the control parame-
ter, proportional to the temperature difference applied to the layer. The typical evolution
of the system with increasing Ra is well known. The layer first remains motionless for too
small an applied temperature difference. As the latter is increased, it eventually exceeds a
critical value (Rac) where steady convection sets in. More complicated dynamics, such as
time-dependent convection, arises as the system is taken further away from onset.
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In two-component miscible liquid mixtures, mass fraction and temperature gradients are
coupled by the Soret effect [3]. According to the sign thereof (or equivalently of the non-
dimensional parameter it enters in, the separation ratio Ψ), the solute (which we take to
be the heaviest of the two components) migrates towards either the warmer (Ψ < 0) or
colder (Ψ > 0) part of the container. The resulting Soret-driven mass fraction gradient thus
induces a solutal buoyancy that strengthens (when Ψ > 0) or opposes (Ψ < 0) the thermal
one, consequently rushing or delaying the onset of convection, comparatively to the pure
fluid problem. When thermal and solutal buoyancies compete, the interplay between the
two moreover typically [3, 4, 5] leads to the following dynamical behavior:

1. As in the pure fluid problem, the quiescent state is stable for Ra smaller than a
threshold value RaH .

2. At RaH , a subcritical Hopf bifurcation of the quiescent state occurs and finite ampli-
tude oscillatory convection sets in.

3. Once reached, the branch of oscillatory solutions can be followed towards higher or
lower values of Ra. Most studies on binary liquid convection focus on these states and
their spatiotemporal properties (see, among the multitude of published theoretical,
experimental and numerical works, [4, 6], as well as [5] for a recent review).

4. For a high enough Ra value (typically less than twice RaH) the oscillations cease as a
transition to steady overturning convection (SOC) occurs.

Investigations of the stationary solutions of the system generally do not extend to Ra
values much greater than those at which the transition to SOC occurs. It is indeed often
noticed (e.g. [5, 7, 8]) that for increasing thermal stress (i.e. increasing Ra), the steady
convective flows of binary mixtures become similar to those of ‘equivalent’ Ψ = 0 pure flu-
ids. This behavior reflects the fact that strong convective motion efficiently mixes the mass
fraction of solute in the bulk of the system, thus weakening any compositional effect on its
solutions. This feature has been used to develop a model, based on the assumption that a
binary mixture problem can be seen as a perturbation of a pure fluid one, to predict the
transition to SOC [8]. Experimental results [9] however, do not support these theoretical
predictions.

There is also an experimental study [10] which unambiguously shows that the stationary
convective patterns that develop in a binary liquid are unlike those obtained in a pure fluid
subjected to identical constraints. The aim of this paper is to tackle a similar topic, as to
whether pure liquid and binary fluid convection are indeed alike at high Ra.

The present work only deals with axisymmetric solutions of the problem for reasons
exposed in [11] where it is shown that, in small aspect ratio cylinders, lateral kinematic
boundaries conditions exert a significant influence on binary liquid flow dynamics. Only a
pure fluid and a particular binary liquid are considered, both such that Pr = 1. It will
be seen that their convection at high Ra display similarities as well as discrepancies and
that the occurrence of either, once again, depends on the lateral kinetic boundary condition
(no-slip or free-slip) along the cylinder’s circumference.

This paper is organized as follows. The main features of the mathematical model, along
with numerical accuracy assessments, are stated in Section 2. Results obtained for both
types of fluids, and both sets of boundary conditions, are given and analyzed in Section 3.
Our conclusions are then summarized in Section 4.
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2 Mathematical model

2.1 Parameters and boundary conditions

The set of reference scales and corresponding dimensionless equations ruling incompressible
binary liquid convection are given in [11]. The physical fields are the velocity v = uer +wez,
er and ez being the radial and upward unit vectors, θ and γ, the departures from the static
dimensionless temperature (ΘS(z)) and reduced mass fraction (ΓS(z)) profiles.

The parameters of the problem are the thermal Rayleigh number, Ra, the Prandtl Pr
and Lewis Le numbers and the separation ratio Ψ. In this study we consider Pr = 1 fluids,
the binary mixture being such that Le = 0.1 and Ψ = −0.2.

We consider an axisymmetric cylindrical enclosure of aspect ratio radius
height

≡
R
H

= 1
2

with

the same boundary conditions as in [11]. We just recall that, along the adiabatic cylinder’s
circumference, we shall investigate both cases of either no-slip or free-slip constraints:

(NS) u = w = 0 for r =
1

2
,

or

(FS) u =
∂w

∂r
= 0 for r =

1

2
.

The first (NS) refers to a liquid enclosed in a cylindrical box whereas the last (FS) is a crude
approximation (capillary effects being here discarded) of a straight liquid bridge [12].

2.2 Numerical method

A description of the pseudo-spectral numerical code used in this study is given in [11]. It
is thus merely recalled here that a Chebyshev pseudo-spectral method and a second order
finite difference schemes are used to solve the spatial and temporal evolutions of the fields.

All forthcoming results were obtained using grids of 51× 101 collocation nodes in r× z.
This spatial resolution, shown to be sufficient for low Ra computations [11], is likewise suf-
ficient over the range of Ra investigated in this paper. This spatial accuracy was assessed
by re-computations of a few solutions (which include steady and unsteady flows, as well as
at the highest values of Ra) using refined 81 × 161 grids.

For the four investigated systems (pure fluid or binary liquid, in the NS or FS config-
urations), the time step δt required to accurately compute the various solutions needed to
be decreased with increasing Ra. For instance, computations of binary liquid flows began
at low Ra with δt = 3 × 10−4 but the Ra = 2 × 105 oscillatory state was obtained with
δt = 10−5. Again, occasional test re-computations of solutions (at a given Ra, using smaller
values of δt) were performed in order to assess the good temporal resolution of the obtained
flows.

To conclude the accuracy assessment of our computations, note that for the pure fluid
(in the NS configuration), the threshold for the onset of convection is found to occur at
Ra = 10871, in good accordance with the linear stability results (Ra = 10887.15) of [13].
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2.3 Symmetry properties of the solutions

Because of the up-down symmetry of the system, if a state X1 = (u1, w1, θ1, γ1) satisfies
the balance equations, then so will its ‘mirror-image’ X2 = (u2, w2, θ2, γ2), given by

u2(r, z, t) = u1(r,−z, t),

w2(r, z, t) = −w1(r,−z, t),

θ2(r, z, t) = −θ1(r,−z, t),

γ2(r, z, t) = −γ1(r,−z, t).

The corresponding transformation is denoted M. Unless invariant under M, solutions there-
fore come in pairs.

Periodic solutions (of period τ) may possess a temporal symmetry T relating solutions
separated by half a period in the following way:

u(r, z, t+ τ/2) = u(r,−z, t),

w(r, z, t+ τ/2) = −w(r,−z, t),

θ(r, z, t+ τ/2) = −θ(r,−z, t),

γ(r, z, t+ τ/2) = −γ(r,−z, t).

3 High Ra dynamics

3.1 FS configuration

Computations were run for both pure fluid and binary mixture for Ra values up to 3 × 105

(over thirty times the threshold values of the corresponding quiescent states).

The evolution with Ra of the pure fluid case is straightforward: once the supercritical
pitchfork bifurcation of the quiescent state is reached (Ra = 6.271× 103), steady convection
sets in and holds for all Ra (at least up to Ra = 3× 105). Moreover, the convective pattern
is found to barely evolve over the investigated Ra interval: flows always consist of a single
roll that fills the whole of the enclosure.

The binary liquid sequence of transitions, from the Hopf bifurcation of the rest state
to oscillatory convection (along with the complex sequence of bifurcation these solutions
undergo) and to steady convection are detailed in [11]. The branch of stationary states,
born at a saddle-node bifurcation (at Ra = 8.117×103) extends up to at least Ra = 3×105.
These flows, as their pure fluid analogues, moreover also consist of a single roll that fills the
whole of the enclosure.

At high Ra, binary liquid stream function and temperature fields are strikingly similar
to those obtained for the pure fluid (at the same value of Ra). A measure that illustrates
the similarity between the pure fluid and binary liquid solutions is the global kinetic energy
of the corresponding flows, Ek(Ra) =

∫

(Ω)

v
2

2
dΩ, plotted in Fig. 1.

As expected, with increasing Ra the strong convective motion in the whole of the enclo-
sure efficiently evens the mass fraction of solute in the bulk of the enclosure, and thus damps
any Soret-induced gradient. Consequently, the binary liquid then behaves as a pure fluid in
the same conditions.

4



10-1

100

101

102

103

104

10000 100000

E
k

Ra

Pure fluid
Binary liquid

Figure 1: Global kinetic energy Ek of pure fluid and binary liquid steady convective states
in the FS configuration.

3.2 NS configuration

When the cylinder’s circumference is taken to be a rigid wall, the system displays, for both
pure and binary liquids, a wider range of dynamical behavior than in the FS configuration.
The pure fluid and binary liquid convective states that occur in the NS configuration are
sketched in Fig. 2, along with the ranges in Ra over which they are stable. A complementary
Ek(Ra) plot, where all solutions are gathered, is given in Fig. 3

As shown by Figs. 2 and 3, multiple branches of solutions coexist, as not only do both
steady and periodic motion occur, but also because two distinct flow patterns arise: either
one roll or an M-invariant pair of stacked rolls. The branches of solutions are hence labelled
by a subscript referring to the pattern type (one roll or two) it belongs to.

Before giving a detailed description of all the transitions between the various convective
regimes, we first comment the main similarities and differences between the pure fluid and
binary liquid solutions.

• Each branch of the binary liquid convective states has its analogue in pure fluid, except
for the osc1 flows. This major discrepancy is thoroughly analyzed and discussed in
forthcoming Sections.

• For all analogous branches of solutions, bifurcations occur at higher values of Ra in
the binary liquid system. This feature reflects the stabilizing effect that one would
intuitively expect in a Ψ < 0 mixture.

• Transitions in pure fluid from one state (of a given pattern) to its oscillatory counterpart
are forward, whereas there is hysteresis in all the transitions in the binary liquid system.
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Figure 2: Sketch of the branches of solutions for the pure fluid (top half of the diagram)
and binary liquid (lower half of the diagram) in the NS configuration. The arrows indicate
the transitions between branches as Ra is increased or decreased beyond or below the given
threshold values.

3.2.1 Pure fluid states and transitions

As depicted in Fig. 2, the sta1 branch that stems from the supercritical pitchfork bifurcation
of the quiescent state (at Ra = 1.0871 × 104) extends up to Rah = 8.4903 × 104 where it
gives way (via a global bifurcation detailed in Section 3.2.2) to oscillatory convection. The
angular frequencies ω of the resulting osc1 solutions are plotted in Fig. 4. The osc1 branch
extends up to Ra = 9.1367 × 104 where it ends in a saddle-node bifurcation. Increasing Ra
beyond this threshold leads the system to settle on the osc2 branch. These states basically
consist of oscillations about sta2-like solutions : during the first half of the period, one of
the rolls expands until it fills a large part of the enclosure and then shrinks back to its
original position; opposite motion occurs over the second half of the period (osc2 solutions
possess the T symmetry property). The evolution of the angular frequency of these flows
with Ra is given in Fig. 5. These oscillations are of much higher frequency than those of
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Figure 4: Angular frequency ω of the pure fluid flows along the osc1 branch of solutions (NS
configuration).

the osc1 solutions and likewise increase with increasing Ra. The osc2 branch of solutions
extends at least up to Ra = 2 × 105 and down to Ra = 7.697 × 104 as the transition (a
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Figure 5: Angular frequencies ω of pure fluid and binary liquid flows along the osc2 branches
of solutions (NS configuration).

supercritical Hopf bifurcation, with ω = 77.13 Hopf frequency) to the sta2 branch of solutions
is reached. The latter can be followed down to Ra = 4.842×104 where it ends in a subcritical
Hopf bifurcation. The destabilizing Hopf mode consists of an alternating circulation (which
possesses the T symmetry property) of fluid that spans the whole enclosure. Due to the
subcritical nature of the bifurcation, these low frequency (ω = 21.23 at the bifurcation)
oscillations grow exponentially in intensity and eventually cast the system to the sta1 branch
of solutions (Fig. 2).

3.2.2 End of the pure fluid sta1 branch

Flows of the sta1 branch of solutions consist of a single roll pattern. Note that such flows
are not M-invariant and thus come in M-related pairs. Apart from the main roll, a small
roll, located in the ‘corner’ of the enclosure (where horizontal and side walls meet) is also
present for all Ra. At low Ra, these rolls (which will from now on be referred to as corner
rolls) are extremely small. The corner rolls however grow in size with increasing Ra, which
will be further commented in Section 3.2.5. An example of such flows, the most extreme
(atRa = 8.49×104, very slightly before the termination of the sta1 branch), is given in Fig. 6.

As the critical value Rah = 8.4903 × 104 is reached, the sta1 state gives way to the
oscillatory osc1 one. The typical evolution of the periodic osc1 flows above this threshold
is illustrated in Fig. 7. The oscillations mainly consist of alternate sequences of slow and
rapid evolutions, the former occurring when the system is in the vicinity of ‘ghosts’ of the
pair of sta1 states and the latter as it is cast from one to the other. The evolution of the
system during such switches is given in Fig. 8. The osc1 oscillations possess the T symmetry
property.

The scenario that leads to the birth of the osc1 state from the sta1 ones via a global
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Figure 6: Stream function and temperature T = ΘS(z) + θ(r, z) contours of the Ra =
8.49 × 104 pure fluid sta1 steady state (NS configuration).

bifurcation is sketched in Fig. 9. For values of Ra lower than Rah, two pairs of stable (solid
dots) and unstable (hollow dots) steady states coexist in phase space, all connected in a
heteroclinic orbit. As Ra increases towards Rah, stable and unstable states approach one
another (pairwise) and merge in a saddle-node bifurcation at Ra = Rah. The heteroclinic
connection between the steady states becomes the osc1 limit cycle when Ra > Rah. Although
unstable states are unreachable (by our time-marching numerical tool), their presence and
the scenario mentioned above are supported by the following observations:

• There is no hysteresis in this transition.

• The (asymptotic) transient behavior of any monitored variable of the sta1 flows, as they
settle towards their final values, clearly display a non-oscillatory exponential relaxation
eλt. Evaluating the decay rates λ as Rah is approached yields the λ(Ra) ∝ (Rah −

Ra)1/2 scaling expected in the vicinity of saddle-node bifurcations.

• As shown by the ω(Ra) plot of Fig. 4, the period τ of the oscillations diverges as Ra
is decreased towards Rah. Slightly above Rah (although only over a rather narrow
range, Ra−Rah ∼ 100), the evolution of the frequency of the flows follows a ω(Ra) ∝
(Ra−Rah)

1/2 trend.

This global bifurcation has been reported before [14, 15], in the context of axisymmetric
thermal convection in a cylinder of larger (Γ = 5) aspect ratio. These studies moreover
include an investigation of the consequences of the sidewall’s thermal conductivity on the
states and transitions of the system. They show that this bifurcation to oscillatory convection
requires a lateral wall that must be a good thermal conductor, which does not correspond
to our lateral thermal conditions.
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Figure 7: Pure fluid, NS configuration. Temporal evolution of the horizontal velocity u at
r = 0.121, z = −0.268. Dashed lines: Ra = 8.490× 104 sta1 steady states values. Solid line:
time series over a period (τ = 9.1910392) of the Ra = 8.491 × 104 osc1 flow. The hollow
dots indicate the instants corresponding to the snapshots displayed in Fig. 8.

3.2.3 Binary liquid states and transitions

The steady sta1 binary liquid convective states are similar to those of the pure fluid case as
they also consist of a single roll. There even is a common range (Ra ∈ [3 × 104, 7 × 104],
as shown by the collapse of the curves in Fig. 3) where both pure fluid and binary liquid
systems display very similar velocity and temperature distributions. Beyond this range, a
discrepancy (discussed in the next section) between the two arises. The sta1 branch extends
up to Rac = 1.0803 × 105.

Beyond that last critical value, the flow is cast to the osc2 branch. Again, these flows are
analogues of those encountered in the pure fluid case and are likewise found to be stable at
least up to Ra = 2×105. The osc2 branch can be followed down to Ra = 9.2724×104 where
it ends in a saddle-node bifurcation which leads the system to settle on the sta2 branch. If
Ra is then increased, the flow remains steady up to Ra = 9.881 × 104 where a subcritical
Hopf bifurcation (of ω = 89.67 Hopf frequency) leads the system back to the osc2 branch.
There is thus hysteresis in transitions between sta2 and osc2 solutions for the binary liquid.
The sta2 branch can be followed down to Ra = 5.0611 × 104, where it ends in a subcritical
Hopf bifurcation. The destabilizing Hopf mode (of ω = 17.49 Hopf frequency) is strikingly
similar to the one that arises in pure fluid (described in Section 3.2.1).

3.2.4 End of the binary liquid sta1 branch

As mentioned in Section 3.2.3, pure and binary liquid sta1 convective regimes are similar over
Ra ∈ [3× 104, 7× 104] and then differ. The similarity is illustrated by Figs. 6 and 10 which
respectively depict pure fluid and binary liquid sta1 flows slightly before the termination
of these branches of solutions. Despite their similarity with pure fluid sta1 solutions, the
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Figure 8: Stream function contours of the Ra = 8.491 × 104 osc1 pure fluid flow at instants
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Figure 9: Schematic representation of the global bifurcation involving pairs of stable (solid
dots) and unstable (hollow dots) steady states and leading to the generation of a limit cycle:
For a given value of the control parameter (Ra0) two pairs of stable and unstable nodes
coexist in phase space, their in-sets and out-sets connected in a heteroclinic orbit. As Ra is
increased towards Rah, stable and unstable nodes approach one another (pairwise). At Rah,
they merge (and vanish) in saddle-node bifurcations and the heteroclinic orbit becomes a
limit cycle for Ra > Rah.

binary liquid sta1 flows do not likewise bifurcate towards oscillatory osc1-like states. This is
in fact due to the occurrence of bifurcations of different type in each case. For the binary
liquid sta1 flows, when Ra is slightly below the threshold Rac = 1.0803× 104, the relaxation
to steadiness consists of exponentially decaying oscillations that can be fitted by eλt cosωt.
This implies that these sta1 fixed points are spiral nodes. The decay rates λ and frequencies
ω are moreover found to follow the (λ(Ra), ω(Ra)) ∝ (Rac − Ra) scaling expected in the
vicinity of a Hopf bifurcation which turns out to be subcritical (see Fig. 2). In particular,
ω(Rac) = 24.3, a value rather close to that at the Hopf bifurcation of the quiescent state
ω = 28.84 ([11]). Why should the quiescent state stability be related to the presently
discussed transition? Although we are unable to even begin answering that, let us mention
the observation by [1], in 2D extended rectangular cells, of switching travelling-waves, where
transient regions of convection (of frequency also very close to that observed at the Hopf
bifurcation of the quiescent layer) appear in corners and spread over the cell.

3.2.5 Physical analysis of the sta1 flows’ destabilization

Going from a detailed description of the differences between the pure and binary sta1 states
bifurcations to a physical insight on the underlying mechanisms is by no way easy. Only
some clues can be proposed, which is the topic of this section.

As previously pointed out, even though the sta1 flows are similar, the corresponding
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Figure 10: Stream function, temperature T = ΘS(z)+θ(r, z) and mass fraction C = ΓS(z)+
γ(r, z) contours of the Ra = 1.075 × 105 binary liquid sta1 steady state (NS configuration).

fixed points are of different types and undergo different bifurcations. In other words, merely
observing similar flows cannot lead to any conclusion as to their upcoming transitions.

Nevertheless, going back to the analysis of their similarities, we find that in the top
corner region (see Figs. 6 and 10) both temperature and mass fraction fields are almost
vertically stratified. The temperature distributions along the sidewall of the enclosure of
pure fluid sta1 states are shown in the upper graph of Fig. 11, for various Ra values below
Rac. Surprisingly, these do not evolve much in the range in Ra over which a significant
growth of the corner roll is observed. The same behavior occurs in the binary liquid sta1

states, for the temperature and mass fraction, as shown in the lower graph of Fig. 11.
The corresponding ‘buoyancy’ profile T + ΨC is therefore also stratified. These results im-
ply that in both cases local ‘buoyancy’ gradients are approximately constant for z ∈ [0.2, 0.5].

The next step of the analysis comes from the following observations:

• Velocities in the corner roll are small compared to those of the main roll (typically
by a factor of twenty or more), which leads to admit that the fluid layer is locally
quasi-quiescent.

• The evolution of the corner roll height h with Ra is displayed in Fig. 12. To be specific,
h was computed as being the distance between the upper corner of the enclosure
(r = 0.5, z = 0.5) and the altitude at which the null stream function contour (that
marks the separation between main and corner rolls) reaches the sidewall. The h(Ra)
graph of Fig. 12 shows that for both pure and binary liquid systems, h is less than
0.3, which implies that the corner rolls dwell in regions where ‘buoyancy’ gradients are
essentially constant. Due to the seemingly diverging trend of the h(Ra) curve in Fig.
12, the pure liquid case deserves further comments on that aspect. Indeed, going back
to the description of the oscillatory osc1 flows (Section 3.2.2), the two states the system
is cast to, between the rapid switches, have a slow temporal evolution and possess the
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corner roll and underlying stratification. This supplies an upper bound to the corner
roll size just before the bifurcation, evaluated to be 0.28 (see Fig. 8).

These observations imply that a local Rayleigh number Ra⋆, based on both h and the
local buoyancy gradient, could be assigned to the quasi-quiescent region. As Ra increases,
so does h and consequently Ra⋆ ∝ h4, which implies that the greater the extension of the
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Figure 12: Height h of the corner roll in pure fluid and binary liquid sta1 flows (NS config-
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quasi-quiescent region is, the less stable it will be. Eventually h becomes such that the
quasi-quiescent region turns unstable (in other words, Ra⋆ reaches a critical value), leading
to the growth of the corner cell that destabilizes the sta1 state.

The quiescent region’s stability is therefore expected to play some role in the destabi-
lization of these flows. In that respect, it is understandable, and observed, that it occurs for
a larger corner roll height (0.3) in a negative separation ratio binary liquid than in a pure
fluid. It may furthermore be inferred that such Soret induced behavior will hold for negative
and positive Ψ, as well as in 3D configurations.

It might be worth mentioning that the steady convective states shown in [14] also display
the presence of a corner roll and its growth with increasing Ra as the transition to oscillatory
convection is reached.

4 Conclusions

The axisymmetric convective states of Pr = 1 pure and binary liquids (with ψ = −0.2 and
Le = 0.1 for the mixture) enclosed in a small aspect ratio cylinder have been computed
for two types of kinematic boundary conditions on the cylinder’s circumference, free-slip or
no-slip.

When the lateral boundary condition is set to free-slip, high Ra pure fluid and binary
liquid steady flows are found to be identical, as pointed out in many other studies (such as
[8, 5]).

When the lateral boundary condition is set to no-slip, multiple branches of solutions
arise, in both kinds of fluid systems. All the convective solutions, which include steady
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and periodic motion, of the binary liquid have analogues in the pure fluid system. There
is however a branch of osc1 periodic oscillations that arises only in the pure fluid system,
emerging from an sta1 steady states branch via a global bifurcation. In the binary liquid
system, such a bifurcation does not occur (a subcritical Hopf bifurcation arises instead), and
consequently neither does any osc1-like solution.

The different evolution of the nevertheless similar sta1 states is related to the presence
of a destabilizing buoyancy gradient quasi-quiescent region, and therefore sensitive to the
Soret effect in the binary case.

From these results, we conjecture that the steady convective states of pure and binary
liquids will indeed become identical at high Ra values if the kinematic and dynamic configu-
rations forbid the formation of locally quasi-quiescent regions of vertically stratified density.

Acknowledgments

We gratefully acknowledge the Centre de Ressources Informatiques de l’Université Paris-Sud
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